!pip install autoviz
from autoviz.AutoViz_Class import AutoViz_Class
%matplotlib inline
AV = AutoViz_Class()
df = AV.AutoViz('empdata.csv')
Shape of your Data Set loaded: (1470, 4)
#######################################################################################
######################## C L A S S I F Y I N G V A R I A B L E S ####################
#######################################################################################
Classifying variables in data set...
4 Predictors classified...
1 variable(s) removed since they were ID or low-information variables
List of variables removed: ['EmployeeNumber']
To fix data quality issues automatically, import FixDQ from autoviz...
| Data Type | Missing Values% | Unique Values% | Minimum Value | Maximum Value | DQ Issue | |
|---|---|---|---|---|---|---|
| EmployeeNumber | int64 | 0.000000 | 100 | 1.000000 | 2068.000000 | Possible ID colum: drop before modeling process. |
| Attrition | object | 0.000000 | 0 | nan | nan | No issue |
| Department | object | 0.000000 | 0 | nan | nan | No issue |
| MonthlyIncome | int64 | 0.000000 | 91 | 1009.000000 | 19999.000000 | has 114 outliers greater than upper bound (16581.00) or lower than lower bound(-5291.00). Cap them or remove them. |
All Plots done Time to run AutoViz = 3 seconds ###################### AUTO VISUALIZATION Completed ########################
#Code:
df = AV.AutoViz('empdata.csv',chart_format ='png',verbose=2 )
from PIL import Image
img=Image.open('Heat_Maps.png')
img.thumbnail((500, 500), Image.ANTIALIAS)
img
df = AV.AutoViz('empdata.csv',chart_format ='html',verbose=2 )
#Output:
Likewise, we will get html files for heat map, scatter plots , violin plots etc.